The Memrowave

Designing the microwave of the future

- Darren Armstrong (EE)
- Andy Gulick (CpE)
- Joseph Serritella (EE)
- Winston Todd (CpE)

Project Goals and Requirements

- The Goal of the project was to analyze the possible design solutions to create
 - Automated Microwave
 - Using Barcode scanning
 - WiFi connectivity
- Design a microwave that has
 - An automatic timer and 10 power levels
 - Local and online database
 - Touch screen interfacing

Microwave specifications

- Developing a system that
 - Scans barcodes within an average of 5 seconds
 - Minimum storage capability for 1000 products
 - Cycle through 10 power levels
 - Power DC components with a maximum of 2 Amps
 - Utilize 2.4 GHz Wi-Fi connections

Hardware Requirements

Requirement	Constraint
Resolution LCD	480X272
Camera Frame Rate	24 Frames per second
LCD screen size	4.3"
GPIO pins on	4 pins
microcontroller	
Communication	I2C
Storage size	512MB
Max power consumption	1070W

Hardware Selections

Selecting components to interface with microwave's subsystems

User Interface/Control

- element14 Beaglebone Black Rev C
- AM3358 Sitara ARM Cortex-A8
- 1 GHz
- 512MB DRAM
- Android 4.2.2 Jelly Bean
- Linux Kernel 3.2
- 5V, 460mA
- GPIO, I²C

LCD Touchscreen

- 4D Systems 4DCAPE-43T
- 4.3" TFT LCD
- 480x272 resolution (portrait)
- Resistive touch
- Powered with 5V directly from BBB headers
- Dimensions: 4.74x3.15"

USB Camera/Wifi

- Logitech HD C270
- Video capture up to 1280 x 720 pixels
- Photo up to
 3.0 megapixels

- MediaTek MT7601 (Ralink 7601) controller
- 2.4GHz, 802.11b/g/n
- 4" antenna

Microwave Control

- Texas Instruments MSP430G2553 microcontroller
- 16MHz
- 16KB flash
- 1.8 3.6V, 330µA/MHz
- 20-pin plastic dual inline package (PDIP)
- GPIO, I²C

7-Segment LED Display

- Maxim Integrated MAX6958
- LED display controller
- 16-pin PDIP
- 3V to 5.5V
- |2C
- Lite-On LTD-4708JR (x2)
- 2-digit, 7-segment LED modules
- 0.4-inch digit height

Inter-Integrated Circuit (I²C)

- Computer bus
- Serial communication
- Half duplex
- Multi-master
- Up to 1008 nodes (10-bit addressing)
- Single-ended signal
- 0.1-5.0 Mbit/s

Microwave Control

Boards

MSP430G2553

Control of Memrowave cook systems

MSP430G2553

- User safety
 - Operate only at commanded power level
 - Stop operation when door is opened
 - Stop cooking within a maximum of 1 second if Beaglebone Black is unresponsive
- Operation
 - o 5 sec minimum magnetron on-time
 - Minimum magnetron off-time for power transitions
 - < 100ms command execution response time</p>
 - Actual response time achieved: < 15ms

Cooking Cycle

Power Level Transition

Web Database

Internet accessible products database

Web Database

- A web database of products was implemented so users will not have to manually enter product information
- Product settings can be cached to the Memrowave's local database
- MongoDB was used for the database
- Node.js + Express for the web server
- REST API will deliver JSON-formatted data

Web Database Schema

```
product({
    name: String,
    description: String,
    upc: { type: String, index: true },
    image_url: String,
    steps: [ ( {
         step_number: Number,
         instructions: String,
         cook time: Number,
         power_level: Number,
         pause_before_step: Boolean
```

Web Database

HTML Output

JSON-formatted Data

→ C server-memrowave.rhcloud.c Q ☆ =

Application Software

User interface and control of Memrowave systems

Home Screen

- Main entry point
- Five options
 - Scan a barcode
 - Manual Operation
 - Favorites
 - o Timer
 - Settings

Barcode Scanner

- Using the Zbar library to decode barcodes
- Align barcode on the screen automatically scan and decode
- Beep confirmation of scan success
- Scan result used to search for matching products

Product Database

- A local SQLite3 database is used to store product information, including:
 - Product name
 - Product description
 - Location of product image
 - o Cooking steps, with
 - Step instructions
 - Power level
 - Cook time

id name description upc image_location

```
id
product_id
instructions
cook_time
power_level
```

Product Search

- Lists all products with matching barcode
- Search locations:
 - Local database
 - Web database
- Selecting a product will bring up the Product Description screen, allowing the user to cook the product

Product Description

- Displayed after a successful barcode scan, if a matching product can be found
- The user can favorite, edit, or delete the product.
- Cook button will display the first step of the cooking process

Favorites

- A table in the database is used to store a list of favorite products
- Allows quick access to frequently used products
- Quicker than scanning a barcode

Manual Operation

- Some items don't have convenient barcodes
- Some users will prefer complete control over microwave operation
- Allow the user to manually set cook time like a standard microwave

Cook Screen

- Displayed while the Memrowave is cooking
- Must remain on the screen to continue cooking
 - Avoid situations where the user cannot stop the microwave
- Countdown shown on the 7-segment display

New Product

- User can manually add product entries
- Built in camera can be used to take a picture of the product and scan the barcode
- User will manually enter cook time and power level
- Product is saved to the local database

Timer

- Reuses the cook screen to count down without cooking
- Remaining time displayed on the 7segment display
- Beeps upon completion

Powering Systems

Powering elements in the Memrowave

Structure

- AC Components
- Internal Light
- Turntable Motor
- Cooling Fan
- Magnetron Transformer

- DC Components
- Beagle Bone Black
- LCD Display
- WIFI Module
- Camera
- 7 Segment Display

AC Power

- All components require
 120 V
- Reuse of the most of the microwave's original wiring layout
- Adjustments made to door switches and magnetron relay

DC Components

Component	Operating Voltage	Max Operating Current(mA)	Power(W)
BeagleBone Black	5	500	2.5
LCD Display	5	250	1.25
WIFI Module	5	500	2.5
Camera	5	500	2.5
7 Segment Display	3.3	600	1.98
MSP430	3.3	500	1.65
		Total Power	12.4

DC Power Supply

- Maximum of 15 watts of power delivery
- Switching Regulator Design
- Minimize use of microwave real estate

Switching Regulator Design

- Maximum current requirement of 3 A
- Allows for a more compact design
- More efficient, 80-95%
- Requires more components
- EMI filtering/RF Considerations

Schematic

ON Semiconductor- LM2576, 5V 3A \$2.35/ea

Mounting

- All internal assembly
- Two PCBs
- Able to acquire proper operation without extra shielding

Electrical Hardware

Microwave electrical components

Electrical Hardware

- Controlling microwave's electronics
- The relays and switches used to control the hardware
 - Control the Magnetron
 - o Lights
 - o Fan
 - Turntable
 - Door safety
- Circuit Design
- Printed Circuit Board

Electronics

- The Memrowave made use of
 - The original magnetron
 - oThe Lights
 - o Fan
 - Turntable
- Electrical systems added to the chassis
 - The Control PCB
 - A USB camera and USB antenna
 - The beagle housed inside a 3D printed case.

Controlling AC elements

- The Memrowave has a familiar functionality to standard microwaves
 - Components are only used when needed
 - Power distributed effectively
 - Safe operation
- Make use of switches
 - o Reuse the mechanical switches for the ovens door
 - Utilize relays to control power
 - Relays are controlled via the MSP430 slave

Control system

- In order to switch the relays we will utilize an MSP430 microcontroller
 - The MSP430 is the slave to the beaglebone master
 - o The MSP430 will be mounted to the PCB
 - The GPIO pins will output an on and off signal
- The MSP430 output current my not be efficient when operating relays
 - To guarantee optimal currents to the relays BJT transistors are used
 - Make use of Three GPIO pins
 - Magnetron
 - Fan/Light/Turntable
 - Piezo Speaker

Door Switch

- The mechanical switch in the door was reused
 - This switch protects a user from the magnetron when the door is open
 - Opening the door will pause the cycle
- The door switch in connected to the salve MSP430 using the fabricated PCB
 - The MSP430 monitors the voltage on a GPIO
 - When the door is open the voltage drops to zero

Relays

- The Memrowave's operation uses a Solid State Relay and a mechanical relay
- Lower current
 components are switched
 using a 8Amp Solid State
 Relay made by Sharp
 o These elements are:
 - Light
 - Fan
 - Turntable

- The MSP430's GPIO pin is used to apply a 3.3V potential to the transistor's base, which biases 3.3V across pins C to D
- The AC signals are switched using pins A and B

Magnetron Relay

- The magnetron's transformer draws a 9Amp current
 - Switching the magnetron required a more robust relay
- A 16A Amp Panasonic relay was mounted to the microwave power PCB solve this issue
 - This relay did not fit between the PCB and LCD cape

- The MSP430's GPIO pin is used to apply a 3.3V potential to the transistor's base, which applies 20V across pins C to D
- The magnetron's AC signal is switched using pins A and B

Control PCB layout

Final PCB

Administration

Budget
Progress
Labor Distribution
Challenges
Milestones

Budget

ITEM	Estimated Cost	Actual Cost
Beagle Bone Black	\$50	\$50
Camera	\$40	\$27.02
LCD Screen	\$100	\$60
Microwave	\$250	\$ 0
Power supply	\$10	\$37.98
Microcontroller	\$11	\$0
Relays and Misc.	\$10	\$27
PCB fabrication	\$60	\$36.55
WIFI	\$25	\$14.99
Total	\$556	\$268.53

Progress

Distribution

			Control system/ PCB	Software
Winston		X		X
Andy		X		X
Darren	X			
Joseph			X	

Challenges

- Initial implantation of I2C
- First time working with PCB designs
- Inexperience with eagle schematic
- Problems mounting new hardware in the microwave's chassis
- Integrating Wi-Fi and camera with Android hardware abstraction layer

Milestones

- Creating the user interface in android
- Testing control circuits on bread board
- Implementing I2C communication
- Controlling the 7-segment display
- Implementing the web database
- Having the MSP430 control all the sub systems
- Created a function switching regulator on a bread board
- Ordering and fabricating the control PCB and power PCB

Questions

• • •

Demo

• • •